Probabilistic and sequential computation of optical flow using temporal coherence

نویسندگان

  • Toshio Mike Chin
  • W. Clem Karl
  • Alan S. Willsky
چکیده

In the computation of dense optical flow fields, spatial coherence constraints are commonly used to regularize otherwise ill-posed problem formulations, providing spatial integration of data. We present a temporal, multiframe extension of the dense optical flow estimation formulation proposed by Horn and Schunck (1981) in which we use a temporal coherence constraint to yield the optimal fusing of data from multiple frames of measurements. Conceptually, standard Kalman filtering algorithms are applicable to the resulting multiframe optical flow estimation problem, providing a solution that is sequential and recursive in time. Experiments are presented to demonstrate that the resulting multiframe estimates are more robust to noise than those provided by the original, single-frame formulation. In addition, we demonstrate cases where the aperture problem of motion vision cannot be resolved satisfactorily without the temporal integration of data enabled by the proposed formulation. Practically, the large matrix dimensions involved in the problem prohibit exact implementation of the optimal Kalman filter. To overcome this limitation, we present a computationally efficient, yet near-optimal approximation of the exact filtering algorithm. This approximation has a precise interpretation as the sequential estimation of a reduced-order spatial model for the optical flow estimation error process at each time step and arises from an estimation-theoretic treatment of the filtering problem. Experiments also demonstrate the efficacy of this near-optimal filter.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probabilistic and Sequential Computation of Optical Flow Using Temporal Coherence * ( revised version of LIDS - P - 2122 )

In the computation of dense optical flow fields, spatial coherence constraints are commonly used to regularize otherwise ill-posed problem formulations, providing spatial integration of data. In this paper we present a temporal, multi-frame extension of the dense optical flow estimation formulation proposed by Horn and Schunck [1] in which we use a temporal coherence constraint to yield the opt...

متن کامل

Computation Optical Flow Using Pipeline Architecture

Accurate estimation of motion from time-varying imagery has been a popular problem in vision studies, This information can be used in segmentation, 3D motion and shape recovery, target tracking, and other problems in scene analysis and interpretation. We have presented a dynamic image model for estimating image motion from image sequences, and have shown how the solution can be obtained from a ...

متن کامل

Experimental Visualization of Labyrinthine Structure with Optical Coherence Tomography

Introduction:Visualization of inner ear structures is a valuable strategy for researchers and clinicians working on hearing pathologies. Optical coherence tomography (OCT) is a high-resolution imaging technology which may be used for the visualization of tissues. In this experimental study we aimed to evaluate inner ear anatomy in well-prepared human labyrinthine bones.Materials and Methods:Thr...

متن کامل

Producing stylized videos using the AnimVideo rendering tool

Stylized rendering is the process of generating images or videos that can have the visual appeal of pieces of art, expressing the visual and emotional characteristics of artistic styles. A major problem in stylizing videos is the absence of temporal coherence, something that results in flickering of the structural drawing elements (such as brush strokes or curves), also known as swimming. This ...

متن کامل

The Application of Multi-Layer Artificial Neural Networks in Speckle Reduction (Methodology)

Optical Coherence Tomography (OCT) uses the spatial and temporal coherence properties of optical waves backscattered from a tissue sample to form an image. An inherent characteristic of coherent imaging is the presence of speckle noise. In this study we use a new ensemble framework which is a combination of several Multi-Layer Perceptron (MLP) neural networks to denoise OCT images. The noise is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE transactions on image processing : a publication of the IEEE Signal Processing Society

دوره 3 6  شماره 

صفحات  -

تاریخ انتشار 1994